Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 8, 2026
- 
            Free, publicly-accessible full text available March 30, 2026
- 
            Free, publicly-accessible full text available November 4, 2025
- 
            Persistent differences in wealth and power among prehispanic Pueblo societies are visible from the late AD 800s through the late 1200s, after which large portions of the northern US Southwest were depopulated. In this paper we measure these differences in wealth using Gini coefficients based on house size, and show that high Ginis (large wealth differences) are positively related to persistence in settlements and inversely related to an annual measure of the size of the unoccupied dry-farming niche. We argue that wealth inequality in this record is due first to processes inherent in village life which have internally different distributions of the most productive maize fields, exacerbated by the dynamics of systems of balanced reciprocity; and second to decreasing ability to escape village life owing to shrinking availability of unoccupied places within the maize dry-farming niche as villages get enmeshed in regional systems of tribute or taxation. We embed this analytical reconstruction in the model of an ‘Abrupt imposition of Malthusian equilibrium in a natural-fertility, agrarian society’ proposed by Puleston et al . (Puleston C, Tuljapurkar S, Winterhalder B. 2014 PLoS ONE 9 , e87541 (doi:10.1371/journal.pone.0087541)), but show that the transition to Malthusian dynamics in this area is not abrupt but extends over centuries This article is part of the theme issue ‘Evolutionary ecology of inequality’.more » « less
- 
            null (Ed.)Abstract Analyses of ancient food webs reveal important paleoecological processes and responses to a range of perturbations throughout Earth's history, such as climate change. These responses can inform our forecasts of future biotic responses to similar perturbations. However, previous analyses of ancient food webs rarely accounted for key differences between modern and ancient community data, particularly selective loss of soft-bodied taxa during fossilization. To consider how fossilization impacts inferences of ancient community structure, we (1) analyzed node-level attributes to identify correlations between ecological roles and fossilization potential and (2) applied selective information loss procedures to food web data for extant systems. We found that selective loss of soft-bodied organisms has predictable effects on the trophic structure of “artificially fossilized” food webs because these organisms occupy unique, consistent food web positions. Fossilized food webs misleadingly appear less stable (i.e., more prone to trophic cascades), with less predation and an overrepresentation of generalist consumers. We also found that ecological differences between soft- and hard-bodied taxa—indicated by distinct positions in modern food webs—are recorded in an early Eocene web, but not in Cambrian webs. This suggests that ecological differences between the groups have existed for ≥48 Myr. Our results indicate that accounting for soft-bodied taxa is vital for accurate depictions of ancient food webs. However, the consistency of information loss trends across the analyzed food webs means it is possible to predict how the selective loss of soft-bodied taxa affects food web metrics, which can permit better modeling of ancient communities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
